Получить доступ
Эксклюзивный партнер
SkillFactory в Казахстане
burger
Каталог Аналитика и Data Science Курс Математика для Data Science
Курс Математика для Data Science
Изучите необходимую базу по математике и статистике для освоения машинного обучения и анализа данных.

Для успешного прохождения курса потребуется умение работать в Python.
Онлайн
в удобное время
старт следующего потока
длительность обучения
2 мес
22 ноября

Сделайте свое резюме привлекательным
для крупных компаний

Каждый, кто начинает свой путь в Data Science, стремится когда-нибудь дорасти до уровня senior. Но требования к специалистам такого уровня, особенно в крупных компаниях, очень высоки. Большинство соискателей не могут пройти собеседование.

Чтобы уверенно решать не типовые задачи и создавать собственные архитектуры, мало владеть основными методами машинного обучения и нейронных сетей: важно понимать законы математики и статистики у них «под капотом».

Существующие курсы по этим темам рассказываются сухим и академичным языком и не нацелены на практику, а на русском языке таких курсов еще меньше. Именно поэтому мы решили создать первый специализированный курс по математике и статистике для Data Science!


Для кого курс

Для специалистов Data Science, которые нацелены на уровень senior.
Преимущества курса
  • Мы рассказываем о математике и статистике понятно и доходчиво. Наша цель — не сделать из вас гения фундаментальной математики, а заложить фундамент для вашего роста в Data Science. С остальным вы разберетесь сами, наша задача — помочь вам втянуться.
  • Курс содержит много практики, которая не ограничивается решением классических уравнений и абстрактных заданий. Мы показываем, как знание математики и статистики работает в решении реальных жизненных задач в области анализа данных, прогнозирования и оптимизации.
  • Мы рассматриваем применение математических и статистических закономерностей в машинном обучении и нейронных сетях, чтобы вы в дальнейшем могли работать не только с типовыми моделями и архитектурами.
  • У нас есть не только сообщество единомышленников, с которыми вы можете обсудить затруднения и поделиться наболевшим, но и поддержка ментора, который поможет выйти из тупика. Вы не останетесь с трудностями один на один.
Программировать на Python и использовать этот язык для анализа и обработки данных
Разработать модель предсказания кредитного рейтинга
Работать с моделями и алгоритмами машинного обучения и решать на их основе практические задачи
Построить модель для увеличения продаж в розничном бизнесе
Этот курс входит в программу Профессия «Data Scientist»
Получать данные из разных источников: базы данных, файлы, интернет
Создать систему рекомендаций подходящих товаров при покупке
Получите навыки уровня middle в Data Science

Вы научитесь:

Уже к середине курса вы сможете

Преподаватель
Аяна Шелике
Преподаватель статистики и линейной алгебры МИЭФ ВШЭ
Выпускница мехмата МГУ
Помогали в разработке
  • Веренцов Сергей
    CTO, компания EORA
  • Павел Братченко
    Data Scienst, Сбербанк
Программа курса
Часть 1
Часть 1
Линейная алгебра
Изучаем вектора и виды матриц
Учимся проводить операции над матрицами
Определяем линейную зависимость с помощью матриц
Изучаем обратные, вырожденные и невырожденные матрицы
Изучаем системы линейных уравнений, собственные и комплексные числа
Осваиваем матричное и сингулярное разложение
Решаем задачи линейной зависимости с помощью матриц
Оптимизируем с помощью метода главных компонент
Закрепляем математические основы линейной регрессии
Часть 2
Часть 2
Основы матанализа
Изучаем функции одной и многих переменных и производные
Осваиваем понятие градиента и градиентного спуска
Тренируемся в задачах оптимизации
Изучаем метод множителей Лагранжа, метод Ньютона и имитацию отжига
Решаем задачи предсказания и поиска выигрышной стратегии с помощью производных и численных методов оптимизации
Закрепляем математические основы градиентного спуска и имитации отжига
Часть 3
Часть 3
Основы теории вероятности и статистики
Изучаем общие понятия описательной и математической статистики
Осваиваем комбинаторику
Изучаем основные типы распределений и корреляции
Разбираемся в теореме Байеса
Изучаем наивный байесовский классификатор
Решаем задачи комбинаторики, валидности и прогнозирования методами статистики и теорвера
Закрепляем математические основы классификации и логистической регрессии
Часть 4
Часть 4
Временные ряды и прочие математические методы
Знакомимся с анализом временных рядов
Осваиваем более сложные типы регрессий
Прогнозируем бюджет с помощью временных рядов
Закрепляем математические основы классических моделей машинного обучения
Как проходит обучение
Изучаете подготовительный материал
Вы сможете проходить обучение из любой точки планеты. Новые модули будут открываться раз в неделю. Специально разработанный контент и дополнительные материалы помогут разобраться в теме.
Выполняете практические задания
Практика состоит из трех частей: выполнения простых упражнений на вычисления; выполнения упражнений на базе Python; решения жизненных задач из области анализа данных, прогнозирования и оптимизации.
Общаетесь с однокурсниками и получаете фидбэк ментора
Вы будете постоянно общаться со своими сокурсниками в закрытых каналах в мессенджерах. Если вы что-то не поймете или не справитесь с задачей — мы поможем разобраться.
Сдаете выпускной экзамен
В конце курса вас ждет специальное задание, в котором вы сможете применить все полученные навыки и подтвердить успешное изучение материала.
Записаться на курс
-45%
36 267 ₸/мес
65 934 ₸/мес
В рассрочку на 3 мес
Скидка по промокоду:
Кешбэк 30%: 32 640 баллов на Lerna
Курс Математика для Data Science
Длительность: 2 мес
Старт курса: 22 ноября
Заполните контактные данные
Имя
Телефон
E-mail
Промокод
Название компании
Отправить заявку
Ознакомиться с условиями публичного договора
success
error
warning

Начните карьеру в Data Science

Работа в Data Science требует знания не только алгоритмов анализа данных и программирования, но и основ математики. На курсе будет много практики — решение реальных задач дата-сайентиста. Это поможет заложить фундамент новой карьеры.

Наша специализация поможет освоить профессию Junior Data Scientist с нуля всего за год. Обучение ориентировано на практику, поэтому в курсе 20% теории и 80% практики на реальных данных. К концу обучения вы сможете продемонстрировать работодателям Git-репозиторий с решенными кейсами и овладеете всеми необходимыми навыками, библиотеками и технологиями для старта карьеры!
Отзывы студентов курсов
Вера Шерман
Мне хочется сказать большое спасибо авторам этого куса и организаторам обучения. Это был мой первый онлайн курс в жизни. Я давно работаю в сфере IT. Очень любопытно было познакомиться с новым инструментом. Курс оказался именно тем, чего хотелось. Для меня все было новым. Несмотря на наличие опыта программирования на разных языках, мне было нелегко.
Наталья Карькова
Понравилось, что много задач. Иногда приходилось подумать, чтобы их решить. Теория хорошо объяснена и много ссылок на дополнительные ресурсы.
Александр Чесноков
Замечательно подобрано соотношение материала и практики, специалисты курса всегда готовы прийти на помощь, вебинары проводятся в доступной форме.
Александр Гладких
Еще очень многому нужно учиться, но курс однозначно стоит своих денег. Желающим работать с данными однозначно рекомендую. Но если уровень совсем нулевой, будет не просто.
Кирилл Атаманенко
Экзамен был достаточно интересный, хотя хотелось-бы потруднее. Все модули были сделаны достаточно понятно и было достаточно практики. Из замечаний, хотелось бы больше практики по визуализации.
Андрей Зелепукин
Курс понравился своей интерактивностью, доступной и наглядной подачей материала, обилием ссылок на дополнительные материалы. Представляет собой обязательный минимум знаний и даже несколько больше. Хотелось бы еще больше заданий на работу с Pandas, API и визуализацию.
Степан Козурак
Сергей Никитин
После курса я буду искать работу как Full-stack разработчика для веба. Я доволен, курсы проходят отлично. Плюс очень важный момент - очень много людей, с которыми есть общие интересы.
Несколько раз пытался начинать обучаться, но каждый раз останавливался, если что-то не мог понять. Поэтому в очередной раз решив еще раз начать все сначала, поставил себе задачу обучаться не самостоятельно, а с помощью четкой программы. Все, с кем успел "столкнуться" объясняют доходчиво, помогают постоянно, если возникают вопросы.
Георгий Мурдасов
Курс позволяет выбрать удобный ритм обучения. Есть возможность перейти в другой поток и всё также получать обратную связь от менторов и кураторов. Если твой поток выпустился - это не значит, что ты не сможешь закончить обучение.
Илья Абрамов
Самообучение с нуля - это не моё, хотя я и освоил основы Python и базы данных самостоятельно. Дедлайны же на курсе сильно стимулируют к занятиям, ну и здорово, когда есть, с кем обсудить возникшие во время обучения проблемы. Всегда старайтесь сделать больше, чем надо для выполнения домашнего задания

Часто задаваемые вопросы

Учитесь из любой точки в удобное время
Развивайте профессиональные навыки в онлайн-формате